
ACME README - BNSS6
Overview
Our system is to provide a secure network in which users can have access to the web-server and
exchange files. With this README file, you can easily set up and use our system.

Prerequisites
It is recommended to deploy each service on separate server in order to build a high robust
system. This means you need a set of VMs with CentOS 7 (there could be some slight difference if
you use other OS) properly installed.

You need a sub network block and make sure all the servers are connected internally.

Our sub network block in this guide is 192.168.0.0/24.

Setup
PKIs
Public Key Infrastructures is vital to our authentication system. We choose to use easy-rsa 3 . We
will start by building our own root Certificate Authority. For security considerations, you need to
place the CA server on a totally isolated network.

Build a Certificate Authority

Download easy-rsa

You will need to enable the Extra Packages for Enterprise Linux (EPEL) repository.

Then download and install easy-rsa package

Prepare a PKI Directory

PKI Directory can help you manage all the certificate and sign requests conveniently.

Execute the following commands

sudo dnf install epel-release

sudo dnf install easy-rsa

af://n0
af://n387
af://n414
af://n385
af://n449
af://n517
af://n519
af://n531

Now you have a place to store all the PKI information.

Build CA

Before build your own CA, you need to provide some necessary information for your CA.

The run ./easy-rsa build-ca , you will be prompted to enter a Common Name. This is a very
important value, make sure all the Common Names are distinct.

You now have two important files — ~/easy-rsa/pki/ca.crt and ~/easy-

rsa/pki/private/ca.key , and your CA is ready to be used to sign certificate requests, and to
revoke certificates.

Request and Sign Certificates

Request and Sign are general operations to generate a certificate, and are always happened on
two hosts to guarantee high security. This can be divided into the follows miner steps:

1. The requesting host provide necessary information to generate a Certificate Sign Request.
The CSR include the host's public key and provided information for CA to verify.

2. The requesting host send CSR to CA in a security way (though CSR contains no secret data
like private key), usually by scp

3. The CA imports the received CSR, verifies the information and decides whether sign this CSR
or not.

mkdir ~/easy-rsa

soft link the executable script

ln -s /usr/share/easy-rsa/3/* ~/easy-rsa/

restrict your pki dirctory for security concern.

chmod 700 ~/easy-rsa

initialize the pki directory

cd ~/easy-rsa

./easyrsa init-pki

edit ~/easy-rsa/tars

set_var EASYRSA_REQ_COUNTRY "Country"

set_var EASYRSA_REQ_PROVINCE "Province"

set_var EASYRSA_REQ_CITY "City"

set_var EASYRSA_REQ_ORG "Organization"

set_var EASYRSA_REQ_EMAIL "admin@example.com"

set_var EASYRSA_REQ_OU "Community"

set_var EASYRSA_ALGO "ec"

set_var EASYRSA_DIGEST "sha512"

./easyrsa gen-req COMMONNAME nopass # you need to provide necessary

information

scp ~/easy-rsa/pki/reqs/COMMONNAME.req user@your_ca_server_ip:/tmp

the last option can be server/client, depends on the host's identity

./easyrsa import-req /tmp/COMMONNAME.req server

./easyrsa sign-req server COMMONNAME

af://n521
af://n553

4. If CA signs the CSR, the CA's certificate and the signed requesting host's certificate are sent
back to the requesting host. And now the host can make use of the certificate.

Revoke Certificates

We need revoke one host's certificate if it's compromised to decrease the security impact. In our
realizations, the Certificate Revocation List is required to distribute to different service manually.

On the Certificate Authority Server:

1. Revoke the certificate with the ./easyrsa revoke client_name command.
2. Generate a new CRL with the ./easyrsa gen-crl command.
3. Transfer the updated crl.pem file to the server or servers that rely on your CA, and on

those systems copy it to the required directory or directories for programs that refer to it.
4. Restart any services that use your CA and the CRL file.

File Server
We use Seafile Pro as our File Server. Follow the instruction and download Seafile Pro from here.
Since this is an opensource software, the official guideline is sufficient to finish installation. What
we focus here is the server customization and configuration.

File Server Configuration

After installation, you can change to the seafile-server-latest directory and execute
./seafile.sh start and ./seahub.sh start to start the file service. By default, seafile is at
port 8000 and seahub is at port 8082. You can use your-ip-address:8082 to visit the web
interface of Seafile (Seahub).

Secure the File Transmission

The next step is to use an Apache reverse proxy server at the same VM to enable us to visit Seafile
by https://your-ip-address . By this way we can encrypt our file data traffic using SSL/TLS
protocol and keep your data secret from others. What's more, we only need open port 443 to
others instead of 8000 and 8082 after doing this.

Though we will deploy an Apache Server which dedicates to encapsulate all the traffic with
SSL later, our experiences tell us we need an extra https proxy here for Seafile. Otherwise
there may be some mixed-contents afterwards. This depends on the specific
implementation of File Server Software. For Seafile, it's necessary to do this operation.

To setup the local HTTPS Apache reverse proxy, we first need to request a key/certificate pair
from the Certificate Authority. Please refer to Request and Sign Certificates to finish this step.

Then you need to have your apache server installed and make sure the following apache mods
are enabled.

scp pki/issued/server.crt user@your_vpn_server_ip:/tmp

scp pki/ca.crt user@your_vpn_server_ip:/tmp

af://n559
af://n388
https://www.seafile.com/en/download/
https://manual.seafile.com/deploy_pro/download_and_setup_seafile_professional_server/#install-thirdpart-requirements
af://n443
af://n462

The first four mods should be naturally enabled with Apache server. You may need to install
mod_ssl manually. Use this command sudo yum install mod_ssl . This mod is automatically
enabled once successfully installed. Check with httpd -M .

Next edit the virtual host config file at /etc/httpd/conf.d/ssl.conf

Up to now your Apache server is ready to use. Before restart your Seafile server, do the following
changes to the Seafile config file.

1. Change the SERVICE_URL in ccnet.conf to

2. Change the FILE_SERVER_ROOT in seahub_settings.py to

Now restart the Seafile, Seahub and Apache server and you shall visit the file server with
https://your-domain-name .

mod_proxy

mod_proxy_http

mod_proxy_balancer

mod_lbmethod_byrequests

mod_ssl

/etc/httpd/conf.d/ssl.conf

<VirtualHost *:443>

 ServerName your-domain-name

 DocumentRoot /var/www/html

 SSLEngine On

 SSLCertificateFile /path/to/cacert.pem

 SSLCertificateKeyFile /path/to/privkey.pem

 Alias /media /home/user/haiwen/seafile-server-latest/seahub/media

 <Location /media>

 Require all granted

 </Location>

 RewriteEngine On

 # seafile fileserver

 ProxyPass /seafhttp http://127.0.0.1:8082

 ProxyPassReverse /seafhttp http://127.0.0.1:8082

 RewriteRule ^/seafhttp - [QSA,L]

 # seahub

 SetEnvIf Authorization "(.*)" HTTP_AUTHORIZATION=$1

 ProxyPreserveHost On

 ProxyPass / http://127.0.0.1:8000/

 ProxyPassReverse / http://127.0.0.1:8000/

</VirtualHost>

SERVICE_URL = https://your-domain-name

FILE_SERVER_ROOT = 'https://your-domain-name/seafhttp'

Web Server
We won't focus on the detailed contents on the web server. All we need in this step is an Apache
Server that can provide a web service. We can do this by merely two commands.

Try to visit http://your-ip-address and you will get a default test page.

OpenVPN Server
VPN Server plays an important role in security. We must make sure only authenticated user can
establish a VPN connection.

Our Solution

We choose OpenVPN as our VPN implementation and deploy two VPN server instance on one VM
in order to provide two authentication method.

In this part we focus on our OpenVPN Server/Client configuration. If you haven't install OpenVPN
yet, please refer to General Installation.

Using Certificate

The first VPN server instance on the VM listens to port 1194/udp and expects Certificate
Authentication. This instance doesn't need extra configuration after you install the OpenVPN
itself. The server.conf and client1.ovpn are shown below.

Install Apache

sudo yum install httpd

Start Apache

sudo service httpd start

server.conf

port 1194

proto udp

dev tun

ca ca.crt

cert server.crt

key server.key # This file should be kept secret

dh none

server 10.8.0.0 255.255.255.0

ifconfig-pool-persist ipp.txt

push "redirect-gateway def1 bypass-dhcp"

push "dhcp-option DNS 208.67.222.222"

push "dhcp-option DNS 208.67.220.220"

keepalive 10 120

tls-crypt ta.key

cipher AES-256-GCM

auth SHA256

user nobody

group nobody

persist-key

persist-tun

af://n392
af://n1507
af://n1460
af://n1467

Using Username/Password with 2FA

The second VPN server instance listens to port 1194/tcp and expects username/password with
2FA authentication.

We need some configuration on the server end in order to enable two factor authentication.

First install the google-authenticator plugin.

Then create /etc/pam.d/openvpn file and input these lines.

status openvpn-status.log

verb 3

explicit-exit-notify 1

client1.ovpn

client

dev tun

proto udp

remote 3.129.108.5 1194

resolv-retry infinite

nobind

user nobody

group nobody

persist-key

persist-tun

remote-cert-tls server

cipher AES-256-GCM

auth SHA256

verb 3

key-direction 1

<ca>

embedded ca cert goes here

</ca>

<cert>

embedded cert goes here

</cert>

<key>

embedded key goes here

</key>

<tls-crypt>

embedded tls key goes here

</tls-crypt>

LC_ALL=C yum -y groupinstall "Development Tools"

yum -y install pam-devel

mkdir /usr/src

cd /usr/src

git clone https://github.com/google/google-authenticator-libpam

cd google-authenticator-libpam

./bootstrap.sh

./configure

make && make install

af://n1475

Now we binds the user with google authenticator. Just type google-authenticator and follow
the instruction.

The server-2.conf and client2.ovpn are shown below.

vi /etc/pam.d/openvpn

google auth

auth required /usr/local/lib/security/pam_google_authenticator.so

forward_pass

account required pam_nologin.so

account include system-auth use_first_pass

password include system-auth

session include system-auth

server-2.conf

port 1194

proto tcp

dev tun

ca ca.crt

cert server.crt

key server.key # This file should be kept secret

dh none

server 10.16.0.0 255.255.255.0

ifconfig-pool-persist ipp.txt

push "redirect-gateway def1 bypass-dhcp"

push "dhcp-option DNS 208.67.222.222"

push "dhcp-option DNS 208.67.220.220"

keepalive 10 120

tls-crypt ta.key

cipher AES-256-GCM

auth SHA256

user nobody

group nobody

persist-key

persist-tun

status openvpn-status.log

verb 3

#-----------------for passwd&2fa-----------#

script-security 3

plugin /usr/share/openvpn/plugin/lib/openvpn-auth-pam.so /etc/pam.d/openvpn

verify-client-cert none

username-as-common-name

client2.ovpn

client

dev tun

proto tcp

remote 3.129.108.5 1194

resolv-retry infinite

nobind

user nobody

group nobody

persist-key

persist-tun

remote-cert-tls server

cipher AES-256-GCM

General Installation

OpenVPN have a regulation about where to place the key and how to name the file, so we will
include all the details from the key generation.

Installing OpenVPN and Easy-RSA

First you need to install easy-rsa on your server:

Then you should make your own directory and then create a sym-link:

And then you should change the owner and restrict access to this directory:

Creating a PKI for OpenVPN

First you need to create a new file:

and add two lines in this file:

which means you will use ECC Elliptic Curve Cryptography (ECC) to generate keys and secure
signatures for your clients and OpenVPN server

Finally use this command to create the PKI directory:

auth SHA256

verb 3

key-direction 1

<tls-crypt>

embedded tls key goes here

</tls-crypt>

auth-user-pass # for passwd&2fa

sudo dnf install epel-release

sudo dnf install openvpn easy-rsa

mkdir ~/easy-rsa

ln -s /usr/share/easy-rsa/3/* ~/easy-rsa/

sudo chown centos ~/easy-rsa

chmod 700 ~/easy-rsa

cd ~/easy-rsa

nano vars

set_var EASYRSA_ALGO "ec"

set_var EASYRSA_DIGEST "sha512"

./easyrsa init-pki

af://n1457
af://n903
af://n923

Creating Certificate Request and Private Key for VPN server

After that you will get a server.req file and a server.key file.

Signing the OpenVPN Server’s Certificate Request

First you need to use scp to copy the server.req to the CA server, and then use your CA server
to sign the request and generate server.crt:

Here the request type is server and the name is also server .

Then you can copy server.crt and ca.crt to your VPN server:

Configure the control channel packets encryption

Now you have the pre-shared key for control channel packets encryption

Generating a client certificate and key pair

First you have to create a directory to store the client certificate and key file:

Then you should generate the request for your client, and sign it with your CA server. It is very
similar with previous case (sign server request), but here you should use client type:

Copy this request to your CA and change to your CA server, then do these commands to sign the
request:

Copy the ca.crt and ta.key files to the ~/client-configs/keys/ directory:

./easyrsa gen-req server nopass

sudo cp /home/centos/easy-rsa/pki/private/server.key /etc/openvpn/server/

cd ~/easy-rsa

./easyrsa import-req /tmp/server.req server

./easyrsa sign-req server server

sudo cp /tmp/{server.crt,ca.crt} /etc/openvpn/server

cd ~/easy-rsa

openvpn --genkey --secret ta.key

sudo cp ta.key /etc/openvpn/server

mkdir -p ~/client-configs/keys

chmod -R 700 ~/client-configs

cd ~/easy-rsa

./easyrsa gen-req client1 nopass

cp pki/private/client1.key ~/client-configs/keys/

cd ~/easy-rsa

./easyrsa import-req /tmp/client1.req client1

./easyrsa sign-req client client1

af://n944
af://n870
af://n969
af://n997

Now your server and client’s certificates and keys have all been generated and are stored in the
appropriate directories on your OpenVPN server.

Configuring your OpenVPN server

First we need to copy the server.conf as our example:

Then we need to change several lines of this file like that:

Adjusting the network and firewall configuration

Then add the following line at the top of the file:

Then add OpenVPN service on the firewall active zone:

Then create the specific masquerade rule for your OpenVPN subnet:

cp ~/easy-rsa/ta.key ~/client-configs/keys/

sudo cp /etc/openvpn/server/ca.crt ~/client-configs/keys/

sudo chown centos.centos ~/client-configs/keys/*

sudo cp /usr/share/doc/openvpn/sample/sample-config-files/server.conf

/etc/openvpn/server/

sudo nano /etc/openvpn/server/server.conf

;tls-auth ta.key 0

tls-crypt ta.key

;cipher AES-256-CBC

cipher AES-256-GCM

auth SHA256

;dh dh2048.pem

dh none

user nobody

group nobody

sudo nano /etc/sysctl.conf

net.ipv4.ip_forward = 1

sudo firewall-cmd --zone=trusted --add-interface=tun0

sudo firewall-cmd --permanent --zone=trusted --add-interface=tun0

sudo firewall-cmd --permanent --add-service openvpn

sudo firewall-cmd --permanent --zone=trusted --add-service openvpn

sudo firewall-cmd --reload

DEVICE=$(ip route | awk '/^default via/ {print $5}')

sudo firewall-cmd --permanent --direct --passthrough ipv4 -t nat -A POSTROUTING

-s 10.8.0.0/24 -o $DEVICE -j MASQUERADE

sudo firewall-cmd --reload

af://n1046
af://n885

Now we can start our service,and it should start up at boot:

Making the Client Configuration

This step is very similar with the configuration of server. First we need to copy client.conf as an
example:

Then we need to change several lines of this file like that:

Next, we will create a script which will compile your base configuration with the relevant
certificate, key, and encryption files. Type nano ~/client-configs/make_config.sh and edit

sudo systemctl -f enable openvpn-server@server.service

sudo systemctl start openvpn-server@server.service

mkdir -p ~/client-configs/files

cp /usr/share/doc/openvpn-2.4.10/sample/sample-config-files/client.conf

~/client-configs/base.conf

nano ~/client-configs/base.conf

remote 3.129.108.5 1194

proto udp

user nobody

group nobody

;ca ca.crt

;cert client.crt

;key client.key

;tls-auth ta.key 1

cipher AES-256-GCM

auth SHA256

key-direction 1

; script-security 2

; up /etc/openvpn/update-resolv-conf

; down /etc/openvpn/update-resolv-conf

#!/bin/bash

First argument: Client identifier

KEY_DIR=~/client-configs/keys

OUTPUT_DIR=~/client-configs/files

BASE_CONFIG=~/client-configs/base.conf

cat ${BASE_CONFIG} \

<(echo -e '<ca>') \

${KEY_DIR}/ca.crt \

<(echo -e '</ca>\n<cert>') \

${KEY_DIR}/${1}.crt \

af://n1096

This script will automatically generate client configuration file with all the certificate and key files.

Finally, you can generate a config file for client1 and the output is a file like client1.ovpn

Then import it in your client application and you can use it to connect to your VPN server!

Authentication Apache Reverse Proxy with SSL
When employees enter the internal network after connecting to the VPN, we need another one
authentication step to prevent potential attacks like insiders intrusion. We here provide two
authentication approaches, i) authenticate with client certificates, ii) authenticate with Kerberos.
Since we are using the very original Kerberos without aggregating it into a SSO authentication web
application (like KTH SSO), we will use two virtualhosts on one Apache Server to take different
authentication requests.

Encrypting all the traffic on the fly is also important, and we will implement HTTPS on both
virtualhosts .

Certificate Authentication

In this way, the client needs a certificate to authenticate himself to the web server. To implement
this functionality, we create a virtualhost and let it listen to port 443.

This will tell Apache server to listen to port 443 and verify client's certificate using CA's certificate
provided in SSLCACertificateFile .

Employees can request certificate from CA and generate a .p12 certificate file. Use this
command:

<(echo -e '</cert>\n<key>') \

${KEY_DIR}/${1}.key \

<(echo -e '</key>\n<tls-crypt>') \

${KEY_DIR}/ta.key \

<(echo -e '</tls-crypt>') \

> ${OUTPUT_DIR}/${1}.ovpn

chmod 700 ~/client-configs/make_config.sh

cd ~/client-configs

./make_config.sh client1

Listen 443

<VirtualHost *:443>

 DocumentRoot /var/www/html

 ServerName web.bnss6.com

 SSLEngine On

 SSLVerifyClient require

 SSLVerifyDepth 10

 SSLCACertificateFile "/home/centos/easy-rsa/pki/ca.crt"

</VirtualHost>

af://n1508
af://n397

Then they need to import this .p12 file to their web browser and start browsing!

Kerberos Authentication

In this way, the client needs a username and a password to authenticate himself to the web
server. To implement this, we first need a Kerberos Server.

Setup Kerberos Server

Install the package first

Then you need to configure three config files.

kadm5.acl is a file to control system privilege.

1. The first parameter means the user you want to grant privilege to.

2. The second parameter means the privilege you want to grant. * means all privilege.

openssl pkcs12 -export -inkey selfsigned-cli.key -in selfsigned-cli.crt -out

selfsigned-cli.p12

yum -y install krb5-server krb5-libs krb5-workstation

/var/kerberos/krb5kdc/kdc.conf

[kdcdefaults]

 kdc_ports = 88

 kdc_tcp_ports = 88

[realms]

 BNSS6.COM = {

 #master_key_type = aes256-cts

 acl_file = /var/kerberos/krb5kdc/kadm5.acl

 dict_file = /usr/share/dict/words

 admin_keytab = /var/kerberos/krb5kdc/kadm5.keytab

 supported_enctypes = aes256-cts:normal aes128-cts:normal des3-hmac-sha1:normal

arcfour-hmac:normal camellia256-cts:normal camellia128-cts:normal des-hmac-

sha1:normal des-cbc-md5:normal des-cbc-crc:normal

 }

/var/kerberos/krb5kdc/kadm5.acl

*/admin@BNSS6.COM *

/etc/krb5.conf

Configuration snippets may be placed in this directory as well

includedir /etc/krb5.conf.d/

[logging]

 default = FILE:/var/log/krb5libs.log

 kdc = FILE:/var/log/krb5kdc.log

 admin_server = FILE:/var/log/kadmind.log

[libdefaults]

 dns_lookup_realm = false

af://n399
af://n641

The krb5.conf is the main config file. It includes log, domain realm, the ticket lifetime and so on.

After editing these files, you can execute this command to initialize a KDC database where you
store all the passwords in. You will be prompt to set a admin password. Carefully remember this!

Then you can start the service with systemctl start krb5kdc and systemctl start kadmin .

The next step is to add a admin user, use the command kadmin.local and then type addprinc
root/admin . Follow the instructions.

At this stage your Kerberos Server is successfully set up.

Setup Kerberos Client Environment on Apache Server

You need to setup the Kerberos Environment before implementing Apache Kerberos AUTH.

Likewise, install the package first

Then the simplest way to configure the Kerberos client is to copy the krb5.conf from the server
to this client. Use scp !

Now try use kinit to get a ticket and klist to see granted tickets.

Setup Apache Virtual Host

We will create a new virtualhost and let it listen to port 444. By this way, if the client want to
use Certificate Authentication, he can simply visit 443 port. Otherwise if he want to use Kerberos
Authentication, he can instead visit 444 port.

 ticket_lifetime = 24h

 renew_lifetime = 7d

 forwardable = true

 rdns = false

 pkinit_anchors = FILE:/etc/pki/tls/certs/ca-bundle.crt

 default_realm = BNSS6.COM

 #default_ccache_name = KEYRING:persistent:%{uid}

[realms]

BNSS6.COM = {

 kdc = krb.bnss6.com:88

 admin_server = krb.bnss6.com:749

 default_domain = BNSS6.COM

}

[domain_realm]

 .bnss6.com = BNSS6.COM

 bnss6.com = BNSS6.COM

[kdc]

 profile = /var/kerberos/krb5kdc/kdc.conf

kdb5_util create -r BNSS6.COM -s

yum install -y krb5-lib krb5-workstation

af://n695
af://n707

Before creating the virtualhost config file, we need to enable auth_gssapi_module mod. And
then create a new Kerberos user HTTP/your-domain-name and its corresponding keytab file.

 Then you can create the virtualhost .

Reverse Proxy

Currently we have two service to employees: The web server and the Seafile server. We want the
user can access the two service by one URL, so we will need do reverse proxy to 'forward'
different requests to different services based on the path.

We want to implement this feature no matter by which method employee is authenticated. Thus
we will configure it in /etc/conf/httpd.conf . Editing this file will influence all the
virtualhosts .

In /etc/conf/httpd.conf , add the following lines in the end.

SSL Encryption

We want to encrypt all our traffic in the Internet. You need request a certificate for this Apache
Server first. Refer to Request and Sign Certificates .

Then add the following lines in the /etc/conf/httpd.conf .

kadmin -p bofh/admin -q "addprinc -randkey HTTP/www.example.com"

kadmin -p bofh/admin -q "ktadd -k /etc/httpd/http.keytab HTTP/www.example.com"

make sure apache can access this file

chown apache /etc/httpd/http.keytab

Listen 444

<VirtualHost *:444>

 DocumentRoot /var/www/html

 ServerName web.bnss6.com

 SSLEngine On

 <Location />

 AuthType GSSAPI

 AuthName "BNSS6 | GSSAPI SSO Login"

 GssapiCredStore keytab:/etc/httpd/http.keytab

 Require valid-user

 </Location>

</VirtualHost>

ProxyPass /web/ http://192.168.0.91/ # The IP address of the Web server

ProxyPassReverse /web/ http://192.168.0.91/# for redirection

ProxyPass / https://192.168.0.43/ # The IP address of the Seafile

server

ProxyPassReverse / https://192.168.0.43/ # for redirection

af://n713
af://n729

Radius Server
We will use FreeRadius to implement Radius Server.

Download

Initialize

Configuration

SSLProxyEngine On

SSLProxyCheckPeerName Off

SSLProxyCheckPeerCN Off

ProxyRequests Off

SSLCertificateFile "/home/centos/easy-rsa/pki/tls/ssl-server.crt"

SSLCertificateKeyFile "/home/centos/easy-rsa/pki/tls/ssl-server.key"

#download freeradius,mysql,mariadb-core

yum install -y freeradius freeradius-utils freeradius-mysql mariadb-server

#verify correctly install

rpm -qa |grep mariadb

rpm -qa |grep freeradius

#start and enable the service when boot

systemctl start mariadb.service

systemctl enable mariadb.service

systemctl start radiusd.service

systemctl enable radiusd.service

configure the radiusd.service file

vi /usr/lib/systemd/system/radiusd.service

[Unit]

Description=FreeRADIUS high performance RADIUS server.

After=syslog.target network.target ipa.service dirsrv.target krb5kdc.service

mariadb.service

[Service]

Type=forking

PIDFile=/var/run/radiusd/radiusd.pid

ExecStartPre=-/bin/chown -R radiusd.radiusd /var/run/radiusd

ExecStartPre=/usr/sbin/radiusd -C

ExecStart=/usr/sbin/radiusd -d /etc/raddb

ExecReload=/usr/sbin/radiusd -C

ExecReload=/bin/kill -HUP $MAINPID

[Install]

WantedBy=multi-user.target

configure file /etc/raddb/user

vi /usr/lib/systemd/system/user

af://n1509
af://n1125
af://n1127
af://n1129

user1 Cleartext-Password := "testing"

 Reply-Message := "Hello, %{User-Name}"

steve Cleartext-Password := "testing"

 Service-Type = Framed-User,

 Framed-Protocol = PPP,

 Framed-IP-Address = 172.16.3.33,

 Framed-IP-Netmask = 255.255.255.0,

 Framed-Routing = Broadcast-Listen,

 Framed-Filter-Id = "std.ppp",

 Framed-MTU = 1500,

 Framed-Compression = Van-Jacobsen-TCP-IP

configure file /etc/raddb/radiusd.conf

vi /usr/lib/systemd/system/radiusd.conf

prefix = /

exec_prefix = ${prefix}

sysconfdir = ${prefix}/etc

localstatedir = ${prefix}/var

sbindir = ${exec_prefix}/sbin

logdir = ${localstatedir}/log/radius

raddbdir = ${sysconfdir}/raddb

radacctdir = ${logdir}/radacct

name = radiusd

confdir = ${raddbdir}

modconfdir = ${confdir}/mods-config

certdir = ${confdir}/certs

cadir = ${confdir}/certs

run_dir = ${localstatedir}/run/${name}

db_dir = ${raddbdir}

libdir = ${exec_prefix}/lib

pidfile = ${run_dir}/${name}.pid

correct_escapes = true

max_request_time = 30

cleanup_delay = 5

max_requests = 16384

hostname_lookups = no

configure file /etc/raddb/sites-available/default

vi /etc/raddb/sites-available/default

 listen {

 ipaddr = *

 port = 0

 type = acct

 }

 authenticate {

 Auth-Type PAP {

 pap

 }

 Auth-Type CHAP {

 chap

MySQL configuration

 }

 Auth-Type MS-CHAP {

 mschap

 }

 mschap

 digest

 eap

 }

 # initialize the Mysql

 mysql

 MariaDB [(none)]> SET password for 'root'@'localhost'=password('123456';

 MariaDB[(none)]> GRANT ALL PRIVILEGES ON *.* TO 'root'@'%'IDENTIFIED BY

'123456' WITH GRANT OPTION;

 MariaDB [(none)]> flush privileges;

 # establish the radius database

 mysql -uroot -p123456

 MariaDB [(none)]> create database radius;

 # import the radius table structure

 mysql -u root -p123456 radius < /etc/raddb/mods-

config/sql/main/mysql/schema.sql

 # verify everything works

 MariaDB [(none)]> show databases;

 MariaDB [(none)]> use radius;

 MariaDB [radius]> show tables;

 MariaDB [radius]> exit

 # configure mysql authentication in freeradius

 cd /etc/raddb/mods-enabled

 ln -s ../mods-available/sql

 # modify mysql in Radius

 vi /etc/raddb/mods-available/sql

 driver = “rlm_sql_mysql”

 dialect = “mysql”

af://n1134

firewall configure to enable the radius and MySQL service

Router configuration
We want to deploy Radius Client in router and make a gateway to gateway VPN connection.
The router has been flashed to OpenWrt in advance. If you haven't done this, refer to https://open
wrt.org/downloads

 # insert data in mysql

 mysql -uroot -p123456

 use radius;

 insert into radgroupreply (groupname,attribute,op,value) values ('user','Auth-

Type',':=','Local');

 insert into radgroupreply (groupname,attribute,op,value) values

('user','Service-Type',':=','Framed-User');

 insert into radgroupreply (groupname,attribute,op,value) values

('user','Framed-IP-Address',':=','255.255.255.255');

 insert into radgroupreply (groupname,attribute,op,value) values

('user','Framed-IP-Netmask',':=','255.255.255.0');

 # we make a new account where username=BNSS6, Password=123456

 insert into radcheck (username,attribute,op,value) values ('BNSS6','Cleartext-

Password',':=','123456');

 insert into radusergroup (username,groupname) values ('test','user');

 #configure the radius client information

 vim /etc/raddb/client.conf

 #because the router have connected to the VPN

 #VPN server address:192.168.0.43

 #All EAP verify request should come from internal network.

 client private-network-1 {

 ipaddr = 192.168.0.43/24

 secret = BNSS6

 }

 #start the radiusd

 radiusd -X

systemctl start firewalld.service

systemctl enable firewalld.service

firewall-cmd --zone=public --add-port=3306/tcp --permanent

firewall-cmd --zone=public --add-port=1812/tcp --permanent

firewall-cmd --zone=public --add-port=1812/udp --permanent

firewall-cmd --reload

af://n1141
af://n1510
https://openwrt.org/downloads

Equip it in the router

OpenVpn Client in router

Then get ca.crt client3.crt client3.key ta.key from VPN server and move them to
/etc/openvpn/ .

opkg update

#because the wapd-mini doesn't support for WPA2-EAP

opkg remove wpad-mini

opkg install wpad

opkg install eapol-test-openssl

vim /etc/config/wireless/wifi-iface

config wifi-iface 'default_radio0'

 option device 'radio0'

 option network 'lan'

 option mode 'ap'

 option ssid 'BNSS6_Radius'

 option encryption 'wpa2'

 option server '192.168.0.65'

 option key 'BNSS6'

vim /root/vpn/config

#configure the OpenVPN

client

dev tun

proto udp

remote IP 1194

resolv-retry infinite

nobind

user nobody

group nogroup

persist-key

persist-tun

ca /etc/openvpn/ca.crt

cert /etc/openvpn/client3.crt

key /etc/openvpn/client3.key

tls-auth /etc/openvpn/ta.key 1

cipher AES-256-GCM

comp-lzo

verb 3

mute 20

mssfix 1400

 #start the vpn

/etc/init.d/openvpn restart

#to read the log

logread -f

af://n1203

Configure Firewall to Allow Forward

now the devices which connect to the routers can access to internal network.

1.

##Google authenticator in Apache Server
CentOS7

1. download in server and run

2. move and change the configuration

3. add authentication user

4. scan the QR code from mobile devices
5. change permission

Snort IDS

iptables -I FORWARD -o tun0 -j ACCEPT

iptables -t nat -I POSTROUTING -s 0.0.0.0/0 -d 0.0.0.0/0 -o tun0 -j MASQUERADE

sudo apt-get install apache2-prefork-dev

sudo apxs2 -i -a -n authn_google mod_authn_google.so

google-authenticator

mv .google_authenticator /etc/apache2/ga_auth

#configure authn_google.conf

vim /etc/apache2/mods-available/authn_google.conf

Options FollowSymLinks Indexes ExecCGI

AllowOverride All

Order deny,allow

Allow from all

AuthType Basic

AuthName "Secret"

AuthBasicProvider "google_authenticator"

Require valid-user

GoogleAuthUserPath ga_auth

GoogleAuthCookieLife 3600

GoogleAuthEntryWindow 2

#start mod_authn_google

sudo a2enmod authn_google && sudo service apache2 restart

sudo apt-get install libpam-google-authenticator

google-authenticator

sudo chmod 640 BNSS6 && sudo chown root:www-data BNSS6

af://n1152
af://n1511

1. Install the required prerequisites with the following command.

2. Install Snort with yum.

3. Update the shared libraries using the command underneath

4. Set up username and folder structure

5. Configuring the network and rule sets

sudo yum install -y gcc flex bison zlib libpcap pcre libdnet tcpdump

sudo yum install -y https://dl.fedoraproject.org/pub/epel/epel-release-

latest-7.noarch.rpm

sudo yum install -y libnghttp2

sudo yum install

http://www6.atomicorp.com/channels/atomic/centos/7/x86_64/RPMS/snort-

2.9.6.1-1.el7.art.x86_64.rpm

sudo ldconfig

sudo groupadd snort

sudo useradd snort -r -s /sbin/nologin -c SNORT_IDS -g snort

sudo mkdir -p /etc/snort/rules

sudo mkdir /var/log/snort

sudo mkdir /usr/local/lib/snort_dynamicrules

sudo chmod -R 5775 /etc/snort

sudo chmod -R 5775 /var/log/snort

sudo chmod -R 5775 /usr/local/lib/snort_dynamicrules

sudo chown -R snort:snort /etc/snort

sudo chown -R snort:snort /var/log/snort

sudo chown -R snort:snort /usr/local/lib/snort_dynamicrules

sudo touch /etc/snort/rules/white_list.rules

sudo touch /etc/snort/rules/black_list.rules

sudo touch /etc/snort/rules/local.rules

sudo vi /etc/snort/snort.conf

Setup the network addresses you are protecting

ipvar HOME_NET 192.168.0.43/32

Set up the external network addresses. Leave as "any" in most

situations

ipvar EXTERNAL_NET !$HOME_NET

Path to your rules files (this can be a relative path)

var RULE_PATH /etc/snort/rules

var SO_RULE_PATH /etc/snort/so_rules

var PREPROC_RULE_PATH /etc/snort/preproc_rules

6. Validating settings

7. Test the configuration

Complete the following command by pressing TAB, and you can see the log of the alert.

Firewall
The firewall software we choose to use is Firewalld. It builds onto the iptabls and you can think of
it as a 'front end' of iptables.

Our default zone/policy is public/drop. Only the service or protocol we explicitly enabled can go
through the firewall.

We will take the firewall configuration on the OpenVPN gateway and the authentication Apache
proxy as examples because they are the most vulnerable points in our network.

Please Note these regulations in Firewalld:

Only incoming packets are processed.
Packets are always processed in top to down direction (rich rules are on top of services or
ports).
Once a packet matches with rule, associate action (allow or deny) will be taken immediately
for that packet.
Packet will not be available for further processing.

Set the absolute path appropriately

var WHITE_LIST_PATH /etc/snort/rules

var BLACK_LIST_PATH /etc/snort/rules

unified2

Recommended for most installs

output unified2: filename snort.log, limit 128

include $RULE_PATH/local.rules

ln -s /usr/lib64/libdnet.so.1.0.1 /usr/lib64/libdnet.1

sudo snort -T -c /etc/snort/snort.conf

sudo vi /etc/snort/rules/local.rules

alert icmp any any -> $HOME_NET any (msg:"ICMP test"; sid:10000001;

rev:001;)

sudo snort -A console -i eth0 -u snort -g snort -c /etc/snort/snort.conf

snort -r /var/log/snort/snort.log.

af://n1512

Configurations

On VPN Gateway

On Authentication Apache proxy

public (active)

 target: default

 icmp-block-inversion: no

 interfaces: eth0

 sources:

 services: dhcpv6-client openvpn ssh

 ports: 1194/tcp

 protocols:

 masquerade: yes

 forward-ports:

 source-ports:

 icmp-blocks:

 rich rules:

 rule protocol value="icmp" drop

 rule family="ipv4" service name="openvpn" log prefix="OpenVPNLimit"

level="warning" limit value="20/m" accept limit value="20/m"

 rule family="ipv4" source address="192.168.0.0/24" service name="ssh"

log prefix="SSH Access" level="notice"

 rule port port="1194" protocol="tcp" log prefix="OpenVPNLimit"

level="warning" limit value="20/m" accept limit value="20/m"

public (active)

 target: default

 icmp-block-inversion: no

 interfaces: eth0

 sources:

 services: dhcpv6-client https http ssh

 ports: 444/tcp

 protocols:

 masquerade: no

 forward-ports:

 source-ports:

 icmp-blocks:

 rich rules:

 rule family="ipv4" source address="192.168.0.0/24" service name="ssh"

log prefix="SSH_Limit" level="warning" limit value="1/m" accept limit

value="2/m"

 rule port port="443" protocol="tcp" log prefix="HttpsLimit"

level="warning" limit value="100/s" accept limit value="100/s"

 rule port port="444" protocol="tcp" log prefix="HttpsLimit"

level="warning" limit value="100/s" accept limit value="100/s"

 rule port port="80" protocol="tcp" log prefix="HttpsLimit"

level="warning" limit value="100/s" accept limit value="100/s"

af://n1533
af://n1537
af://n1539

General Setup Command

1. Install and Enable Your Firewall to Start at Boot

2. Explore the default

3. Add services and ports to the zone

4. Add rich rules

5. Reload the firewall

Usage

sudo yum install firewalld

sudo systemctl enable firewalld

sudo reboot

sudo firewall-cmd --list-all

#output

public (default, active)

 target: default

 icmp-block-inversion: no

 interfaces: eth0 eth1

 sources:

 services: ssh dhcpv6-client

 ports:

 protocols:

 masquerade: no

 forward-ports:

 source-ports:

 icmp-blocks:

 rich rules:

sudo firewall-cmd --zone=public --permanent --add-service=http

sudo firewall-cmd --zone=public --permanent --add-service=https

sudo firewall-cmd --zone=public --permanent --add-port=444/tcp

sudo firewall-cmd --permanent --add-rich-rule='rule protocol value=icmp

drop'

sudo firewall-cmd --permanent --add-rich-rule='rule port port="443"

protocol="tcp" accept limit value="100/s" log prefix="HttpsLimit"

level="warning" limit value="100/s"'

sudo firewall-cmd --permanent --add-rich-rule='rule family=ipv4 source

address=192.168.0.0/24 service name=ssh log prefix="SSH Access"

level="notice" log limit value=5/m prefix="Too Much SSH Tried"

level="warning" accept'

sudo firewall-cmd --reload

af://n1532
af://n824
af://n1213

Access from London Office
If you are in ACME London Office, the only thing you need to do to access our internal resources,
is to connect to our London Office Router with WPA2 Authentication. We assume in this case, all
the computer is pre-configured by engineers from ACME.

Access from your Home
In this case, you need to do some configurations.

Connect to our VPN

We use OpenVPN as our VPN implementation. To connect our VPN, you need to download
OpenVPN Connector which is available here https://openvpn.net/download-open-vpn/. We will
provide you with a .ovpn file, which you can import to OpenVPN Connector and connect.

We provide two methods to authenticate you to our VPN server, the digital certificate or
username/password with Google Authenticator.

Using Certificate

For the digital certificate method, the public cert and private key are embedded in the .ovpn
file, which means you can directly connect to our VPN server without further configuration.

Using Username/Password with 2FA

For 2FA method, you need bind your Google Authenticator with your account in advance. When
you try to connect to our VPN server, you need use password | code in google-authenticator
as the right password to log in.

Authenticate to our Web/File Server
You are in our internal network now. But you can't access our Web/File Server before further
authentication.

Still, there are two ways for you to authenticate, Certificate or Kerberos.

Using Kerberos

We assume you are using Windows platform.
Four steps are required before accessing our internal service

1. Download and install Firefox web browser (We currently don't support Chrome or IE).

1. Navigate to the URL about:config .

2. Click "Accept the Risk and Continue".

3. Type negotiate-auth into the filter at the top of the page, in order to remove most of
the irrelevant settings from the list.

4. Double-click on network.negotiate-auth.trusted-uris and enter

5. Find network.auth.use-sspi option and change it to False.

2. Download MIT Kerberos for windows from http://web.mit.edu/kerberos/dist/.

bnss6.com

af://n1213
af://n1215
af://n1217
https://openvpn.net/download-open-vpn/
af://n1296
af://n1302
af://n1306
af://n1397
http://web.mit.edu/kerberos/dist/

1. Follow the instructions in the installer to complete the installation process.

2. Change to C:\ProgramData\MIT\Kerberos5 directory. Replace krb5.ini file with the
code below and save it.

3. Configure hosts mapping. We haven't deployed our DNS server yet :(
Add 2 entries into hosts file located at C:\Windows\System32\drivers\etc. You need
Administrator privilege to edit this file.

4. Get tickets from our Kerberos Server.

1. Open your MIT Kerberos client

2. Click Get Ticket on the up right corner. A dialogue box for entering username and
password should appear.

3. Use the username and password below for testing.

4. You should have a granted ticket now.

Using Certificate

If you want to use this way to authenticate, you should have a key/cert pair.

There are multiple ways to utilize the certificate. Our suggestion is use openssl to convert your
key/cert pair to .p12 format certificate. You can simply import this file to your web browser and
the authentication will be done automatically.

Now open Firefox and enter web.bnss6.com !

Use your Phone to exchange file

[libdefaults]

dns_lookup_realm = false

ticket_lifetime = 24h

renew_lifetime = 7d

forwardable = true

rdns = false

default_realm = BNSS6.COM

[realms]

BNSS6.COM = {

 kdc = krb.bnss6.com:88

 admin_server = krb.bnss6.com:749

 default_domain = BNSS6.COM

}

[domain_realm]

.bnss6.com = BNSS6.COM

bnss6.com = BNSS6.COM

192.168.0.91 krb.bnss6.com

192.168.0.162 web.bnss6.com

windows@BNSS6.COM

windows

af://n1449
af://n1261

You will need a Android phone and VPN connection.

Download OpenVPN app and use exactly the same config file you used in Windows PC.

Then download Seafile app and it will prompt you to enter information. If ACME requires a
higher security level, you may have to log in with advanced configurations. More details in the
demo.

Enable Two Factor Authenticator

1. download google authenticator in smart phone
2. generate QR code from Seafile Setting
3. use mobile device scan the QR code generated from Seafile to bind.

af://n1282

	ACME README - BNSS6
	Overview
	Prerequisites
	Setup
	PKIs
	Build a Certificate Authority
	Download easy-rsa
	Prepare a PKI Directory
	Build CA

	Request and Sign Certificates
	Revoke Certificates

	File Server
	File Server Configuration
	Secure the File Transmission

	Web Server
	OpenVPN Server
	Our Solution
	Using Certificate
	Using Username/Password with 2FA

	General Installation
	Installing OpenVPN and Easy-RSA
	Creating a PKI for OpenVPN
	Creating Certificate Request and Private Key for VPN server
	Signing the OpenVPN Server’s Certificate Request
	Configure the control channel packets encryption
	Generating a client certificate and key pair
	Configuring your OpenVPN server
	Adjusting the network and firewall configuration
	Making the Client Configuration

	Authentication Apache Reverse Proxy with SSL
	Certificate Authentication
	Kerberos Authentication
	Setup Kerberos Server
	Setup Kerberos Client Environment on Apache Server
	Setup Apache Virtual Host

	Reverse Proxy
	SSL Encryption

	Radius Server
	Download
	Initialize
	Configuration
	MySQL configuration
	firewall configure to enable the radius and MySQL service

	Router configuration
	Equip it in the router
	Configure Firewall to Allow Forward

	Snort IDS
	Firewall
	Configurations
	On VPN Gateway
	On Authentication Apache proxy

	General Setup Command

	Usage
	Access from London Office
	Access from your Home
	Connect to our VPN
	Using Certificate
	Using Username/Password with 2FA

	Authenticate to our Web/File Server
	Using Kerberos
	Using Certificate

	Use your Phone to exchange file
	Enable Two Factor Authenticator

